Upstate/Downstate

Changing Patterns of Achievement, Demographics and School Effectiveness in Illinois Public Schools under NCLB
ABSTRACT

During the early years of the No Child Left Behind era, “low-income school” was mostly code for an urban school that served high concentrations of non-white students. But big jumps in low-income enrollment in communities that are still predominantly white have changed this situation in a fundamental way.

This report describes some surprising shifts in regional achievement patterns in Illinois public schools under NCLB. These shifts show worrisome declines in many communities that were not the original focus of NCLB, and promising growth in some communities that were. Evidence presented also shows that changes in school effectiveness . . . what schools and districts do to improve their impact on student and adult learning . . . played as powerful a role in local and regional achievement shifts as race and family income did.

- Statewide trends:
 - Average achievement rose during the early years of NCLB but leveled out during the last half-decade.
 - Low-income enrollment rose steadily throughout the entire NCLB era.

- Regional trends:
 - Low-income enrollment in Chicago stayed constant at about 85% but composite reading and math achievement rose by 14 and 18 points respectively.
 - In suburban Chicagoland, low-income enrollment rose by an average of 22 points but gains in school effectiveness in many districts blunted the impact that rise had on achievement. Overall, average achievement declined by 1 to 3 points.
 - In northern Illinois, low-income enrollment grew by an average of 19 points. Gains in school effectiveness reduced the negative impact of this growth in wealthier districts but overall achievement still declined by 1 to 2 points.
 - In central and southern Illinois, low-income enrollment rose by an average of 16 to 21 points. On average, school effectiveness stayed more of less constant in both of these regions and overall achievement fell by an average of 6 to 9 points.

The State of Illinois is one of the most demographically representative states in the nation. For that reason, the changes described in this report are likely to reflect patterns that extend well beyond Illinois borders.
Upstate/Downstate pays particular attention to changes in achievement, demographics and school effectiveness that occurred in the 55 member districts of Illinois’ Large Unit District Association (LUDA). These districts serve close to half of all Illinois public school students and are broadly representative of all 852 districts statewide.

Unlike some Illinois districts that serve only elementary/middle or high school populations, unit districts serve all of the students in their communities from grades PK through 12. Detailed, individual reports for each of the 55 LUDA districts can be obtained online at http://www.urbanedleadership.org/

Research and analysis for Upstate/Downstate was made possible by a continuing grant from the W. Clement and Jessie V. Stone Foundation and additional support from the U.S. Department of Education and the Finnegan Family Foundation.
SOURCES OF DATA

Unless otherwise noted, all of the data contained in this report are derived from publicly-available information posted now or in the past by the Illinois State Board of Education at ftp://ftp.isbe.net/SchoolReportCard/ or at https://iirc.niu.edu/Classic/Default.aspx

ACKNOWLEDGMENTS

We are indebted to Denis Roarty for technical and intellectual support with the data sets used to develop this report. In addition, we thank the superintendents of Illinois’ Large Unit District Association (LUDA) for their feedback on early drafts of Upstate/Downstate. We are especially indebted to LUDA Executive Director, Diane Rutledge, for facilitating communications with LUDA superintendents during the final months of writing. Finally, we thank our colleagues at the University of Illinois at Chicago for their critical feedback throughout the writing of this report.
CONTENTS

INTRODUCTION
6

SECTION 1: The National Context
7
- SES, Race and School Effectiveness
9
- How Many Effective Schools Do You Need to See?
12

SECTION 2: Shifts in School Effectiveness under NCLB
14
- Getting Underneath the Averages
15
- Typical Shifts in School Effectiveness Varied a Lot from One Region to Another
17
 - Chicago and Suburban Chicagoland
18
 - Northern Illinois
19
 - Central Illinois
20
 - Southern Illinois
21
- Fiscal Resources and Per Pupil Instructional Spending across Regions
22

SECTION 3: A Tale of Two Districts
27
- Impact on Third Grade and Future District Achievement
29
- Double Jeopardy
32

SECTION 4: Economic Distress is an Equal Opportunity Disrupter
33
- Underneath the Averages of Achievement Growth in Chicago
38
- Test Results that Control for Race and Family Income Combined
39

SECTION 5: Some Promising Opportunities to Support Scaled Improvements in School and District Effectiveness
41

- **Recommendation 1**
 - Commit to More Useful and Responsible Test Reportage
42

- **Recommendation 2**
 - Follow Through on Early Advances in Leadership Preparation and Support
43

- **Recommendation 3**
 - Rise to the State Constitution’s Challenge to Support “... the Educational Development of All Persons to the Limit of Their Capacities”
46

ENDNOTES
49

APPENDICES
54
List of Member Districts

CENTRAL ILLINOIS (17)
- Ball-Chatham 5
- Bloomington 87
- Champaign 4
- Danville 118
- Decatur 61
- Dunlap 323
- Galesburg 205
- Jacksonville 117
- Kankakee 111
- Mattoon 2
- McLean County 5
- Moline-Coal Valley 40
- Peoria 150
- Quincy 172
- Rock Island 41
- Springfield 186
- Urbana 116

NORTHERN ILLINOIS (9)
- Belvidere 100
- DeKalb 428
- Freeport 145
- Harlem 122
- Oswego 308
- Rockford 205
- Sterling 5
- Sycamore 427
- Yorkville 115

CHICAGO & SUBURBAN CHICAGOLAND (23)
- Aurora East 131
- Aurora West 129
- Barrington 220
- Batavia 101
- Central 301 (Burlington)
- Chicago 299
- Crete-Monee 201U
- CUSD 200 (Wheaton)
- CUSD 300 (Algonquin)
- Elmhurst 205
- Geneva 304
- Huntley 158
- Indian Prairie 204 (Aurora)
- Kaneland 302 (Maple Park)
- Lake Zurich 95
- Naperville 203
- Plainfield 202
- Round Lake 116
- St. Charles 303
- U-46 (Elgin)
- Valley View 365U (Romeoville)
- Waukegan 60
- Woodstock 200

SOUTHERN ILLINOIS (6)
- Alton 11
- Cahokia 187
- Collinsville 10
- East St. Louis 189
- Effingham 40
- Marion 2
INTRODUCTION

In January 2002, federal No Child Left Behind legislation (NCLB) launched a nationwide experiment. This experiment was founded on two basic beliefs:

- All children, regardless of race, family income or ZIP code, are capable of reaching proficiency on challenging academic standards if they are properly taught.
- A promising way to ensure that all children get properly taught is to spell out academic expectations, report regularly on how well those expectations are being met, and create stiff sanctions for schools and districts that continually fail to meet them.

In some respects, NCLB was a simple reaffirmation of the American belief that public education should create a level playing field for each new generation of Americans. Study after study during the last half of the 20th century had shown that schools had little independent impact on achievement. ZIP code, race and family income predicted achievement with remarkable accuracy. But starting in the late 1970’s, another body of research began to identify individual schools where standardized achievement far exceeded demographic predictions. This body of knowledge, and growing interest in charter schools and other alternative forms of school organization, helped build bipartisan support for NCLB.

What made NCLB such an audacious leap of faith was the scale of uncertainty that accompanied the experiment. For example:

- In 2002 there was no evidence that stubborn connections between achievement, race and socio-economic status could be broken at the district, regional or state level.
- In 2002 there was no evidence that the testing industry could actually build large-scale assessments that reported meaningful, standards-based information at a reasonable cost to teachers, parent and policy makers.\(^2\)
- In 2002 there was no evidence that progressive sanctioning of under-achieving schools and districts would be a dependable mechanism for improving their performance.

This report describes how the connections between family income, race and achievement shifted in Illinois, one of the most representative states in the nation, during the NCLB era.
SECTION 1
THE NATIONAL CONTEXT

When James Coleman and his colleagues began their study of achievement differences in the mid-1960’s, they expected to find that most differences would be caused by disparities in school and district resources. What they found instead was that test performance was more closely associated with students’ family background and the backgrounds of their classmates than with school and district spending.

Since Coleman, scores of carefully controlled studies have produced similar findings. One of the most recent and sophisticated of these studies was published in January 2017 by Sean Reardon, Demetra Kalogrides and Ken Shores of Stanford’s Center for Education Policy Analysis. Key findings from this study are summarized in Figures 1.1 and 1.3 below.

Figure 1.1 shows the relationship between average test performance and average socio-economic status (SES) in over 3,000 American school districts between 2009 and 2013:

- The vertical axis shows average achievement scores in grade equivalents.
- The horizontal axis shows average SES for families in each district (factors that define SES are listed in the upper right corner of Figure 1.1; race is not one of those factors).
- Each pink dot represents the intersect of average achievement and average SES for a single school district.
- Each red dot represents one of the 55 member districts in Illinois’ Large Unit District Association (LUDA).

Figure 1.1 tells two big stories about American public schools during the final years of NCLB:

- **The connection between standardized achievement and SES is still very strong.**
 Where average SES is high, the lowest achieving districts still score close to two grade levels above the highest-achieving districts where average SES is low.

- **The difference between the highest and lowest achieving districts at most points on the SES continuum is 2 to 3 grade equivalents.**
 For example, the lowest-achieving districts in the middle of the SES continuum have average scores of about two years below grade level. The highest achieving districts, with identical SES levels, score a year or more above grade level.

The message of these data is that **something other than SES** is causing differences in achievement that are often as large as two to three grade equivalents.
The story told by the red points in Figure 1.1 is that LUDA districts are remarkably representative of all districts nationwide:

- Ranges of achievement and SES in LUDA districts closely match those of districts nationwide.
- Achievement variations in LUDA districts with similar SES levels closely match those of districts nationwide.

SES, Race and School Effectiveness

If SES does less to determine achievement than the averages imply, another likely candidate is race. On average, black, Latino and white populations with similar SES still achieve at very different levels. So, on average, achievement is higher in districts with higher proportions of white students than it is in districts with comparable SES but higher proportions of black and Latino students. But underneath the averages, something different is happening. That something shows up in the example below of two districts from opposite sides of the country.

Simi Valley5, home to the Ronald Reagan Presidential Library, is a prosperous suburb located about 50 miles northwest of downtown Los Angeles. The Simi Valley Unified School District has 29 schools and enrolls a little more than 18,000 students. 56% percent of students are white, 25% are Latino and 6% are black. The median income in Simi Valley is $91,000.

Charlotte-Mecklenburg6 is a large urban/suburban district with 170 schools and total enrollment of a little over 147,000. 33% of students are white, 17% are Latino and 42% are black. The median income in Charlotte-Mecklenburg is $57,000.

Based on demographics alone, average achievement in Simi Valley should be quite a bit higher than achievement in Charlotte-Mecklenburg. But Figure 1.2 tells a different story. Average achievement in Simi Valley is 0.6 years below grade level while achievement in Charlotte-Mecklenburg is 0.4 years above grade level. That means average achievement in Charlotte-Mecklenburg is a full grade equivalent higher than average achievement in Simi Valley.

\textbf{FIGURE 1.2}
Achievement and SES in Simi Valley, CA and Charlotte-Mecklenburg, NC

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure12.png}
\caption{Achievement and SES in Simi Valley, CA and Charlotte-Mecklenburg, NC}
\end{figure}
Drawing again from the work of Reardon, Kalogrides and Shores, the data illustrated in Figure 1.3 offer more details about what is actually going on. The circles in Figure 1.3 show average achievement and average SES for all U.S. school districts that have at least 100 white, 100 Latino and 100 black students in each of grades 3, 4, 5, 6, 7 and 8:

- Green circles represent the black population of each district.
- Blue circles represent Latino populations.
- Pink circles represent white populations.

Larger circles reflect groups with larger enrollments; smaller circles denote groups with smaller enrollments.

The connected circles for Simi Valley and Charlotte-Mecklenburg show how average achievement and average SES intersect for each racial sub-group in each district. In all cases, racial sub-groups in Charlotte-Mecklenburg substantially out-perform comparable sub-groups in Simi Valley.

FIGURE 1.3

Achievement, SES and Race in a Broad Sampling of U.S. Public School Districts

Like Figure 1.1, Figure 1.3 tells two large and important stories:

- **Within-district differences of achievement and SES are powerfully associated with race**
 - On average, white students in most of the districts shown scored at or above grade level and were in the upper third of the SES continuum.
 - Average Latino achievement in most districts was between grade level and two years below grade level, and average SES was in the middle third of the continuum.
 - Average black achievement was between one and two years below grade level, and average SES was in the lower half of the SES continuum.

- **At all points on the SES continuum, achievement differences WITHIN racial groups vary by as much as three grade equivalents from one district to another.**

 Drawing on the example of Simi Valley and Charlotte-Mecklenburg:

 - Average white achievement in Charlotte-Mecklenburg is 3.0 grade equivalents higher than it is in Simi Valley.
 - Average black achievement is 1.6 grade equivalents higher in Charlotte-Mecklenburg than it is in Simi Valley.
 - Average Latino achievement is 0.9 grade equivalents higher in Charlotte-Mecklenburg than in Simi Valley.
 - Black and Latino achievement is higher in Charlotte-Mecklenburg than in Simi Valley even though average SES among black and Latino families is higher in Simi Valley.

On one hand, Figure 1.3 illustrates how unsuccessful NCLB was at getting school districts to break the close association between race, SES and achievement. On the other, it illustrates that school effectiveness varies a lot across districts with comparable student demographics.

School effectiveness is a deliberately imprecise term that was first introduced by Ronald Edmunds in the 1970s. An important thing to note about the literature on school effectiveness is that it fully acknowledges the impact that factors outside of a school’s control have on valued school outcomes like achievement, attendance and graduation rates. The central premise of school effectiveness is that factors schools do control can often be utilized more effectively to blunt the impact of things schools cannot control.

Like race, SES and material resources, school effectiveness can have a powerful impact on achievement. The good news from the variability described in Figure 1.3 is that improvements in school effectiveness could reasonably increase achievement in most districts by between 0.75 and 2.0 grade-equivalents. Applied at scale, changes of this magnitude would boost American achievement from its customary position in the middle of the international pack to become one of the highest achieving nations in the world.7
Ronald Edmonds’ work on school effectiveness is widely regarded as the first major challenge to research that concluded schools had little or no independent impact on student learning and standardized achievement.

In the four decades since Edmonds’ early work, research on school effectiveness, school leadership development and improvement science has become a sub-field in its own right. The focus of this field has been to better understand the factors that challenge school effectiveness as well as the factors that contribute most directly to its improvement. Increasingly, school leadership programs across the country use texts like the following to introduce school leaders to this powerful new body of knowledge.
The best documented changes that occurred in Illinois schools under NCLB were demographic and financial. Key demographic shifts included:

- Declining overall enrollment
- Increasing low-income enrollment
- Declining white enrollment
- Increasing Latino enrollment.

These and other demographic shifts are summarized in the upper chart of Figure 2.1.

Financial changes have also been well documented. Schools in Illinois depend more heavily on local revenues than most other states in the nation. The financial crisis of 2008 and a sluggish statewide economy has exacerbated funding inequities and produced declines in equalized assessed valuations that continue to this day in most districts. In 2016, close to 60% of all Illinois districts (499 of 852) were spending more than they were bringing in\(^8\).

Then there’s achievement. Since 2001, the Illinois State Board of Education has spent around $350 million on high-stakes testing. But very little of the information that this investment produced was reported in ways that parents, educators and policy-makers could rely on\(^9\).

In the later years of NCLB, independent reports on school and district progress turned increasingly to nationally-normed assessments like the ACT and National Assessment of Educational Progress (NAEP). Locally, many districts gave up on state tests and diverted local funds to commercial tests like the NWEA MAP. Others simply did not have the resources to do that.

Statewide NAEP and ACT trends are summarized in the bottom portion of Figure 2.1. They show modest gains over time, with stronger growth in math than in reading. Throughout the NCLB era, achievement at all levels in both reading and math stayed very close to national averages\(^10\).
As useful as averages can be, the power of effective schools research has come from looking more closely at *variability*. Simi Valley and Charlotte-Mecklenburg show that the Devil . . . and the angels . . . live in the details.

In Illinois, publicly-available data are not yet reported in ways that could support a study like the one described in Section 1. But unlike most states, Illinois has posted de-identified, student-level files that include detailed data for every one of the million-plus Illinois students who were tested each year\(^\text{11}\). These files make it possible to create full distributions of school, district and regional data without the fatal distortions that NCLB proficiency levels and other pre-set filters introduce.

Like the study described in Section 1, the metric used here to assess shifts in school effectiveness is the intersect between achievement and socio-economic status. In Figure 2.2:

- Achievement is measured as the percent of students who scored at or above statewide medians\(^\text{12}\) in the year that the test was given (shown on the vertical scale).
- SES is estimated using the percent of district enrollment that is eligible for free or reduced lunch (shown as “Percent low-income enrollment” on the horizontal scale).
- Black and blue data points show the intersect of achievement and low-income enrollment for each of the 709 Illinois districts that reported data for grades 3-8 in both 2001 and 2016.
- The “best fit” trend lines that run through each scatter plot show achievement levels that are most typical of each low-income enrollment level on the horizontal scale.

Each of the charts in Figure 2.2 illustrates a different piece of the school effectiveness story:

- The top chart shows the relationship in 2001 between low-income enrollment and composite reading achievement for grades 3 through 8.
- The middle chart shows what that same relationship looked like in 2016. The big, rightward slide of blue data points down the trend line reflects statewide growth in average, low-income enrollment from 37% in 2001 to 50% in 2016.
- The bottom chart compares the trend lines from the top two charts and removes individual data points from both years to highlight the comparison as clearly as possible.

In the bottom chart, the blue trend line from 2016 sits above the black trend line from 2001 at every point on the low-income continuum. This indicates that between 2001 and 2016 school effectiveness in composite reading improved at every point on the low-income continuum. Bigger spaces between trend lines at the higher and lower ends of the continuum mean that, on average, school effectiveness in reading improved most in the state’s wealthiest and poorest districts. School effectiveness charts for composite math look about the same.
Figure 2.2
STATEWIDE, TYPICAL SCHOOL EFFECTIVENESS IN READING IMPROVED AT ALL INCOME LEVELS
Relationship between 3-8 Reading Achievement and Low-Income Enrollment in 709 Illinois Districts

2001

PERCENT AT/ABOVE STATEWIDE MEDIAN

PERCENT LOW-INCOME ENROLLMENT

2016

PERCENT AT/ABOVE STATEWIDE MEDIAN

PERCENT LOW-INCOME ENROLLMENT

2001 vs. 2016

2016 Trend line
2001 Trend line
Typical Shifts in School Effectiveness Varied a Lot from One Region to Another

On average, composite reading and math achievement in grades 3 through 8 showed modest, statewide gains between 2001 and 2016. This occurred despite a 13-point increase in average, low-income enrollment and an 11-point drop in white enrollment. Other things being equal, those changes would typically result in achievement decline. What Figure 2.2 illustrates is that “other things being equal” was interrupted by statewide gains in school effectiveness at all points on the low-income continuum. But those gains were not evenly distributed.

The charts on pages 18 through 21 illustrate big differences in how achievement, low-income enrollment and school effectiveness changed in four Illinois regions under NCLB:

- Low-income enrollment in Chicago stayed constant at about 85% but composite reading and math achievement rose by 14 and 18 points respectively.
- In suburban Chicagoland, low-income enrollment rose by an average of 22 points but gains in school effectiveness in many districts blunted the impact that rise had on achievement. Average achievement overall declined by 1 point in reading and 3 points in math.
- In northern Illinois, low-income enrollment grew by an average of 19 points. Gains in school effectiveness reduced the negative impact of this growth, especially in wealthier districts. But average overall achievement still declined by 1 point in reading and 2 points in math.
- In central Illinois, low-income enrollment rose by an average of 21 points. On average, school effectiveness stayed constant, but average reading achievement fell by 9 points and average math achievement fell by 6 points.
- In southern Illinois, low-income enrollment rose by an average of 16 points. Average school effectiveness stayed constant, but average reading and math achievement each dropped by 8 points.

The charts on pages 18 through 21 employ the same scatter plot format used in Figure 2.2 to describe changes in each region:

- Charts on the left side of each page show shifts for composite reading in grades 3-8.
- Charts on the right side of each page show shifts for composite math in grades 3-8.
Figure 2.3
ON AVERAGE, SCHOOL EFFECTIVENESS IN CHICAGO AND SUBURBAN CHICAGOLAND ROSE BY ABOUT 10 POINTS ACROSS THE WHOLE LOW-INCOME CONTINUUM

229 School Districts Located in Cook, DuPage, Kane, Lake, McHenry and Will Counties

Reading

Average Low-Income Enrollment in 2001: 17%

Average Low-Income Enrollment in 2016: 39%

Math

Average At/Above State Median 58%

Average At/Above State Median 59%

2001 Trend line

2016 Trend line

2001 Trend line

2016 Trend line
ON AVERAGE, SCHOOL EFFECTIVENESS ROSE IN WEALTHIER DISTRICTS IN NORTHERN ILLINOIS BUT, IN POORER DISTRICTS, CHANGED LESS IN READING AND NOT AT ALL IN MATH

59 School Districts Located North of Interstate 80 and Outside Suburban Chicagoland

Figure 2.4

Northern Illinois

Reading

Average Low-Income Enrollment in 2001: 18%

Math

Average Low-Income Enrollment in 2016: 37%
Central Illinois

Figure 2.5
ON AVERAGE, SCHOOL EFFECTIVENESS STAYED MOSTLY CONSTANT IN CENTRAL ILLINOIS

256 School Districts Located South of Interstate 80 and North of Interstate 70

READING

Average Low-Income Enrollment in 2001: 22%

MATH

Average Low-Income Enrollment in 2016: 43%
Figure 2.6
ON AVERAGE, SCHOOL EFFECTIVENESS STAYED MOSTLY CONSTANT IN SOUTHERN ILLINOIS
165 School Districts Located Near or South of Interstate 70

READING

Average Low-Income Enrollment in 2001: 37%

- **AVERAGE AT/ABOVE STATE MEDIAN**
 - 55%

Average Low-Income Enrollment in 2016: 53%

- **AVERAGE AT/ABOVE STATE MEDIAN**
 - 47%

MATH

Average Low-Income Enrollment in 2001: 37%

- **AVERAGE AT/ABOVE STATE MEDIAN**
 - 54%

Average Low-Income Enrollment in 2016: 53%

- **AVERAGE AT/ABOVE STATE MEDIAN**
 - 46%
A clear message from the charts shown on pages 18 through 21 is that districts across the state have responded in different ways to big jumps in low-income enrollment. And those differences have produced big changes in regional achievement patterns.

In some districts, school effectiveness has stayed fairly constant. In these districts, achievement fell in predictable ways as low-income levels rose. On average, more of these districts were located in central and southern Illinois than in northern Illinois and suburban Chicagoland.

In other districts, growth in school effectiveness blunted the impact of rising low-income enrollment. In these districts, achievement was stable, dropped only a little or even improved as low-income enrollment grew. On average, more of these districts were located in northern Illinois and suburban Chicagoland than in central and southern Illinois.

Fiscal Resources and Per Pupil Instructional Spending across Regions

Deep analysis of the relationship between school funding and school effectiveness is beyond the scope of this report. But regional differences in school effectiveness that are reported on pages 18-21 correspond pretty closely with regional differences in local property values and per pupil spending for instruction. These differences are illustrated in Figures 2.7 and 2.8 below.

Equalized assessed valuation (EAV) is the measure used by the Illinois State Board of Education to represent taxable property values in local school districts. Figure 2.7 compares per pupil EAV in suburban Chicagoland districts with per pupil EAV in northern, central and southern Illinois districts in 2001 and 2016. It does that by separating districts in each region into three groups:

- Data reported under the green masthead represent the 25% of districts in each region with the lowest incidence of low-income enrollment.
- Data reported under the tan masthead represent the 50% of districts in each region with low-income enrollment that is closest to the regional median.
- Data reported under the yellow masthead represent the 25% of districts in each region with the highest incidence of low-income enrollment.

The percentages shown in Figure 2.7 compare median EAV in northern, central and southern Illinois districts with the median EAV of comparable districts in suburban Chicagoland. For example, in 2001, the median EAV in northern Illinois districts with low-incidence of low-income enrollment (green masthead) was about 44% of the median EAV in comparable suburban Chicagoland districts. In central Illinois, the median EAV was 38% of suburban Chicagoland, and in southern Illinois the median EAV was 28% of suburban Chicagoland. By 2016, those figures changed to 49%, 36% and 32% respectively.
The overall story of Figure 2.7 is that median EAV in all three groups of suburban Chicagoland districts is substantially higher than comparable districts in other regions, but that differences get less pronounced as the incidence of low-income enrollment rises.

FIGURE 2.7

Equalized Assessed Valuation is Much Higher in Suburban Chicagoland than Other Regions

Equalized Assessed Valuation by Region and by Incidence of Low-Income Enrollment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Equalized Assessed Valuation (EAV) for Median District in Group</td>
<td>$230,240</td>
<td>$101,307</td>
<td>$87,812</td>
<td>$63,995</td>
</tr>
<tr>
<td>Equalized Assessed Valuation Compared with Median District in Suburban Chicagoland Group</td>
<td>44%</td>
<td>38%</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Equalized Assessed Valuation (EAV) for Median District in Group</td>
<td>$423,391</td>
<td>$205,733</td>
<td>$154,278</td>
<td>$133,599</td>
</tr>
<tr>
<td>Equalized Assessed Valuation Compared with Median District in Suburban Chicagoland Group</td>
<td>49%</td>
<td>36%</td>
<td>32%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Districts with Middle Range of Low-Income Enrollments</th>
<th>Suburban Chicagoland</th>
<th>Northern Illinois</th>
<th>Central Illinois</th>
<th>Southern Illinois</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Equalized Assessed Valuation (EAV) for Median District in Group</td>
<td>$169,520</td>
<td>$86,503</td>
<td>$75,116</td>
<td>$46,599</td>
</tr>
<tr>
<td>Equalized Assessed Valuation Compared with Median District in Suburban Chicagoland Group</td>
<td>51%</td>
<td>44%</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Equalized Assessed Valuation (EAV) for Median District in Group</td>
<td>$266,850</td>
<td>$142,097</td>
<td>$132,672</td>
<td>$81,788</td>
</tr>
<tr>
<td>Equalized Assessed Valuation Compared with Median District in Suburban Chicagoland Group</td>
<td>53%</td>
<td>50%</td>
<td>31%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Equalized Assessed Valuation (EAV) for Median District in Group</td>
<td>$87,562</td>
<td>$67,824</td>
<td>$60,310</td>
<td>$40,750</td>
</tr>
<tr>
<td>Equalized Assessed Valuation Compared with Median District in Suburban Chicagoland Group</td>
<td>77%</td>
<td>69%</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Equalized Assessed Valuation (EAV) for Median District in Group</td>
<td>$129,709</td>
<td>$97,111</td>
<td>$100,882</td>
<td>$79,948</td>
</tr>
<tr>
<td>Equalized Assessed Valuation Compared with Median District in Suburban Chicagoland Group</td>
<td>75%</td>
<td>78%</td>
<td>61%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.8 uses the same format as Figure 2.7 to compare per pupil spending for instruction across regions in 2001 and 2016. Figure 2.8 tells two important stories:

- The first story is that differences in instructional spending between suburban Chicagoland and other regions are not as large as differences in EAV. This reflects provisions in the state funding formula that support districts with lower EAV at higher rates than districts with higher EAV.
The second story is that, compared with suburban Chicagoland, per pupil spending for instruction in most northern, central and southern Illinois districts was less equitable in 2016 than it was in 2001. For example, in the 25% of districts in each region with the highest incidence of low-income enrollment (yellow masthead), per pupil spending was about the same as suburban Chicagoland in 2001, but was 8 to 17 percentage points below parity in 2016. Among the 50% of districts in each region with mid-level incidence of low-income enrollment (tan masthead), northern, central and southern Illinois were all at 91% of parity in 2001. By 2016, however, these figures fell to 82%, 76% and 70% respectively. Only those districts with low-incidence of low-income enrollment maintained their parity levels from 2001 or, in the case of northern Illinois, increased parity by seven percentage points.

FIGURE 2.8

Differences in Per Pupil Spending between Suburban Chicagoland and Other Regions Grew between 2001 and 2016 except in Districts with Lower Incidence of Low-Income Enrollment

Per Pupil Spending for Instruction by Region with and by Incidence of Low-Income Enrollment

<table>
<thead>
<tr>
<th>Districts with Lowest Incidence of Low-income Enrollments</th>
<th>Suburban Chicagoland</th>
<th>Northern Illinois</th>
<th>Central Illinois</th>
<th>Southern Illinois</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$4,478</td>
<td>$3,514</td>
<td>$3,470</td>
<td>$3,337</td>
</tr>
<tr>
<td>Per Pupil Instructional Spending (Median District in Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Instructional Spending Compared with Median District in Suburban Chicagoland Group</td>
<td>78%</td>
<td>77%</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$7,147</td>
<td>$6,041</td>
<td>$5,580</td>
<td>$5,296</td>
</tr>
<tr>
<td>Per Pupil Instructional Spending (Median District in Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Instructional Spending Compared with Median District in Suburban Chicagoland Group</td>
<td>85%</td>
<td>78%</td>
<td>74%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Districts with Middle Range of Low-income Enrollments</th>
<th>Suburban Chicagoland</th>
<th>Northern Illinois</th>
<th>Central Illinois</th>
<th>Southern Illinois</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$4,036</td>
<td>$3,680</td>
<td>$3,666</td>
<td>$3,667</td>
</tr>
<tr>
<td>Per Pupil Instructional Spending (Median District in Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Instructional Spending Compared with Median District in Suburban Chicagoland Group</td>
<td>91%</td>
<td>91%</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$7,500</td>
<td>$6,136</td>
<td>$5,723</td>
<td>$5,224</td>
</tr>
<tr>
<td>Per Pupil Instructional Spending (Median District in Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Instructional Spending Compared with Median District in Suburban Chicagoland Group</td>
<td>82%</td>
<td>76%</td>
<td>70%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Districts with Highest Incidence of Low-income Enrollments</th>
<th>Suburban Chicagoland</th>
<th>Northern Illinois</th>
<th>Central Illinois</th>
<th>Southern Illinois</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$3,820</td>
<td>$3,900</td>
<td>$3,893</td>
<td>$3,876</td>
</tr>
<tr>
<td>Per Pupil Instructional Spending (Median District in Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Instructional Spending Compared with Median District in Suburban Chicagoland Group</td>
<td>102%</td>
<td>102%</td>
<td>101%</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$6,400</td>
<td>$6,026</td>
<td>$5,425</td>
<td>$5,640</td>
</tr>
<tr>
<td>Per Pupil Instructional Spending (Median District in Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Pupil Instructional Spending Compared with Median District in Suburban Chicagoland Group</td>
<td>94%</td>
<td>85%</td>
<td>88%</td>
<td></td>
</tr>
</tbody>
</table>
The resource and spending stories told by Figures 2.7 and 2.8 match up closely with regional shifts in school effectiveness that are described on pages 18 through 21. While that correspondence does not prove that the one caused the other, it raises powerful questions about the relationship between district resources and a district’s capacity to improve school effectiveness.

Resources do not determine school outcomes, but they do influence them in important ways. One way we know this is that the state’s wealthiest communities spend up to $20,000 per student annually, above and beyond the statewide median, to support their own local schools. For more than half a century, a core premise of Title 1 and other supplemental support programs has been that, on average, more resources are needed to support successful learning among students from low-income households than for students from more advantaged circumstances. Figure 2.9 illustrates a difficult challenge that Illinois now confronts in this regard.

FIGURE 2.9

Within Regions, Per Pupil Spending for Instruction is Roughly the Same Regardless of a District’s Low-Income Enrollment Level . . . but EAV Varies Dramatically

Per Pupil EAV and Spending for Instruction by Region and by Incidence of Low-Income Enrollment
Charts on the left side of Figure 2.9 show median EAV levels in 2001 and 2016 for each of the four Illinois regions and for each of the three low-income incidence levels in each region. Charts on the right side of Figure 2.9 use the same format to report median per pupil spending for instruction.

Percentages at the base of each chart compare districts with mid-range and high-incidence of low-income enrollments with low-incidence districts in their own region. For example, in suburban Chicagoland, the median EAV for districts in the middle range of low-income enrollments was 74% of the median EAV for low-incidence districts in 2001. The median EAV for high-incidence districts was only 38% of the median EAV for low-incidence districts.

There are two important things to notice in Figure 2.9. First, charts on the left side show that median EAV declines across all regions as the incidence of low-income enrollment increases. This means that districts with the greatest need for additional school resources are least able to generate those resources from their local tax base. In most districts, this situation intensified during the 15 years between 2001 and 2016.

A second thing to notice is that, within each region, per pupil spending in districts with moderate to high levels of low-income enrollment is not much different than spending in districts with fewer low-income enrollments. How Illinois will be able to confront this problem without reducing its longstanding dependence on local property taxes is a matter that the state has so far been unable to resolve.

* * * * * *

Regional trends are useful because they offer broad clues about what might be happening at the school and district level. The section that follows draws on data from two representative districts . . . one from suburban Chicagoland, the other from central Illinois . . . to illustrate how regional changes in low-income enrollment and school effectiveness were reflected in district-level outcomes.

To get a more detailed picture of district-level impact, this study also generated separate reports for each of the 55 LUDA districts. These reports are all available on-line at http://www.urbanedleadership.org/.
This section highlights two districts where shifts in school effectiveness were broadly representative of their regions:

- The first district is located in suburban Chicagoland. In this district, low-income enrollment rose by 24 points, white enrollment dropped by 25 points and Latino enrollment increased by 17 points between 2001 and 2016.
- The second district is located in central Illinois. In this district, low-income enrollment rose by 29 points and white enrollment dropped by 8 points between 2001 and 2016.

The orange diamonds in Figures 3.1 and 3.2 show that in 2001, math achievement in both districts was about the same . . . 54% versus 56%. Each district was also right on the trend line for districts with similar low-income enrollment in their regions. Finally, the diagonal dots below each scatter plot show that achievement in both districts was very close to the middle of the 2001 scoring range for all 55 LUDA districts.

In 2016, both districts continued to stay very close to their regional trend lines. But achievement in the suburban Chicagoland district held at 54% while achievement in the central Illinois district fell from 56% to 42%. That moved the suburban Chicagoland district well above a declining LUDA median while the central Illinois district slipped a little below it.
Figure 3.1

In this suburban Chicagoland district, growth in school effectiveness kept a 24-point rise in low-income enrollment from depressing math achievement.

Composite 3-8 Math Achievement and Low-income Enrollment in 256 Suburban Chicagoland Districts

Figure 3.2

In this central Illinois district, limited growth in school effectiveness allowed math achievement to decline as low-income enrollment increased by 29 points.

Composite 3-8 Math Achievement and Low-income Enrollment in 165 Central Illinois Districts
Impact on Third Grade and Future District Achievement

Figures 3.1 and 3.2 show that shifts in school effectiveness had a powerful impact on composite achievement at grades 3 through 8 in each of the districts shown. But an even more critical indicator of future achievement is the impact those shifts had on outcomes in grade three.

In 2012, the Anne E. Casey Foundation released a study called *Double Jeopardy* (see excerpt below). It updated a long line of prior research on the close association between reading proficiency at the end of third grade and academic success in later years. The core findings of *Double Jeopardy* were that students who read proficiently by the end of third grade:

- are four times more likely to graduate from high school than students who don’t;
- are seven times more likely to graduate from high school than students who have lived in poverty for at least one year and are not reading proficiently by the end of third grade;
- are nine time more likely to graduate from high school than students from poor families who live in neighborhoods with high concentrations of poverty and who are not reading proficiently by the end of third grade.

The charts in Figure 3.3 illustrate what happened to third grade reading and math achievement in the same two districts that were described in Figures 3.1 and 3.2. In the suburban Chicagoland district, average achievement saw a small decline in both reading and math between 2001 and 2016. Students scoring below grade level increased from 35% to 42% in reading and from 32% to 37% in math. But in the central Illinois district, third grade declines were much more pronounced. There, students scoring below grade level increased from 30% to 48% in reading and from 27% to 51% in math.

Figure 3.3 uses grade equivalencies based on statewide scoring distributions to report how full ranges of achievement in each district changed during the NCLB era. Each colored band shows the percent of students who scored at different points on the achievement range:

- Pink and tan bands show students who scored one or more years below grade level.
- Green bands show students who scored at grade level.
- Blue and purple bands show students who scored one or more years above grade level.

For each district, the numbers at the top of each chart compare how average 3rd grade achievement in 2016 compared with average 3rd grade achievement at the beginning of NCLB:

- In the suburban Chicagoland district, average achievement in 2016 was about 2 months behind the 2001 reading average, and about 1 month behind the 2001 math average.
- In the central Illinois district, average achievement in 2016 was about 8 months behind the 2004 reading average, and more than a year behind the 2004 math average.
Figure 3.3

Suburban Chicagoland District

Between 2001 and 2016, average achievement for students in grade 3 was:

Reading

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>10%</td>
<td>6%</td>
<td>11%</td>
<td>2%</td>
</tr>
<tr>
<td>2016</td>
<td>13%</td>
<td>17%</td>
<td>24%</td>
<td>7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>18%</td>
<td>20%</td>
<td>23%</td>
<td>10%</td>
</tr>
<tr>
<td>2016</td>
<td>20%</td>
<td>21%</td>
<td>27%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Math

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>8%</td>
<td>10%</td>
<td>14%</td>
<td>22%</td>
</tr>
<tr>
<td>2016</td>
<td>12%</td>
<td>14%</td>
<td>18%</td>
<td>26%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>16%</td>
<td>16%</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>2016</td>
<td>16%</td>
<td>16%</td>
<td>16%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Central Illinois District

Between 2004 and 2016, average achievement for students in grade 3 was:

Reading

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>7%</td>
<td>17%</td>
<td>24%</td>
<td>7%</td>
</tr>
<tr>
<td>2016</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>20%</td>
<td>10%</td>
<td>21%</td>
<td>20%</td>
</tr>
<tr>
<td>2016</td>
<td>21%</td>
<td>27%</td>
<td>29%</td>
<td>27%</td>
</tr>
</tbody>
</table>

Math

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>14%</td>
<td>17%</td>
<td>22%</td>
<td>20%</td>
</tr>
<tr>
<td>2016</td>
<td>14%</td>
<td>14%</td>
<td>22%</td>
<td>20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Level</th>
<th>On Track for ACT 25+</th>
<th>Below Level</th>
<th>2 Years Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>2016</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Standardized achievement is a lagging indicator of student learning and school effectiveness. Third grade outcomes don’t just reflect the learning that students do in third grade. They reflect student learning across the entire primary program from PK through grade 3. When sustained growth in achievement starts to occur in third grade, it is almost always a lagging indicator of important work that began four or five years earlier in prior grades.

Growth in third grade achievement also raises the floor for all subsequent grade levels. In the same way that sustained growth in grade 3 reflects growth in the entire primary program, sustained growth at higher grade levels is always at least partly due to good work that occurred in prior grades.15

But the opposite is also true. Without significant intervention, declines in third grade achievement are a harbinger of lower achievement and declining high school graduation rates for many years to come.
THE ANNIE E. CASEY FOUNDATION

Double Jeopardy

How Third-Grade Reading Skills and Poverty Influence High School Graduation

Annie E. Casey Foundation (2012)

“Educators and researchers have long recognized the importance of mastering reading by the end of third grade. Students who fail to reach this critical milestone often falter in the later grades and drop out before earning a high school diploma. Now, researchers have confirmed this link in the first national study to calculate high school graduation rates for children at different reading skill levels and with different poverty rates.

“Results of a longitudinal study of nearly 4,000 students find that those who do not read proficiently by third grade are four times more likely to leave school without a diploma than proficient readers. For the worst readers, those who could not master even the basic skills by third grade, the rate is nearly six times greater. While these struggling readers account for about a third of the students, they represent more than three-fifths of those who eventually drop out or fail to graduate on time.

“What’s more, the study shows that poverty has a powerful influence on graduation rates. The combined effect of reading poorly and living in poverty puts these children in double jeopardy.

• About 16 percent of children who are not reading proficiently by the end of third grade do not graduate from high school on time, a rate four times greater than that for proficient readers
• For children who were poor for at least a year and were not reading proficiently, the proportion failing to graduate rose to 26 percent
• For children who were poor, lived in neighborhoods of concentrated poverty and not reading proficiently, the proportion jumped to 35 percent
• Overall, 22 percent of children who lived in poverty do not graduate from high school, compared to 6 percent of those who have never been poor. The figure rises to 32 percent for students spending more than half of their childhood in poverty.
• Even among poor children who were proficient readers in third grade, 11 percent still did not finish high school. That compares to 9 percent of subpar third-grade readers who have never been poor.
• About 31 percent of poor African-American students and 33 percent of poor Hispanic students who did not hit the third-grade proficiency mark failed to graduate. These rates are greater than those for White students with poor reading skills. But the racial and ethnic graduation gaps disappear when students master reading by the end of third grade and are not living in poverty.”

http://www.aecf.org/resources/double-jeopardy/
SECTION 4

ECONOMIC DISTRESS IS AN EQUAL OPPORTUNITY DISRUPTER

During the early years of NCLB, “low-income school” was mostly code for an urban school that served high concentrations of non-white students. But big jumps in low-income enrollment in communities that are still predominantly white have changed this situation in a fundamental way.

In 2001, over 50% of all low-income students in Illinois lived in Chicago; about 90% of those students were black or Latino. Outside of Chicago, less than 20% of public school students came from low-income households. Of those students a little over 50% were black or Latino16.

By 2016, 44% of all students attending public schools outside of Chicago came from low-income households. In these schools, eligibility for free or reduced lunch jumped dramatically in all three major racial groups:

- From 49% to 76% among black students;
- From 46% to 70% among Latino students;
- From 13% to 29% among white students17.

In all but the wealthiest of Illinois communities, schools have been deeply challenged by these shifts. Failing fundamental improvements in school effectiveness, higher concentrations of low-income enrollment have been accompanied by steep declines in achievement.

The data in Section 2 make it clear that rising concentrations of low-income households have depressed achievement more consistently in predominantly white communities in central and southern Illinois than in other parts of the state. A hopeful message for these communities is that shifts in school effectiveness offer a powerful way to fight back. Few things deliver that message more clearly than the progress that was made under NCLB in the City of Chicago.

Figure 4.1 compares a few key demographics from the City of Chicago with similar data from the central Illinois district that was briefly described in Section 3:

- In the central Illinois district under NCLB,
 - overall enrollment of students in grades 3-8 hovered within 50 students of 1,500;
 - low-income enrollment rose from 28% to 57%;
 - white enrollment declined from 95% to 87%;
 - other demographic markers were mostly stable.
• In Chicago under NCLB,
 o overall enrollment of students in grades 3-8 fell by close to 20% from around 210,000 to around 170,000;
 o low-income enrollment stayed flat at around 85%;
 o black enrollment dropped from 52% to 39%;
 o Latino enrollment rose from 35% to 46%;
 o other demographic markers were mostly stable.

Figures 4.2 and 4.3 illustrate changes in composite 3-8 reading and math achievement that occurred in both districts between 2001 and 2016. For the most part, changes in Chicago were the mirror image of changes that occurred in the sample district from central Illinois district.

Figure 4.2—Composite Reading at Grades 3-8
For this or any other district comparison, the caveat is that every district is unique. In this case, the differences between a relatively small, mostly white agricultural district in central Illinois and the third largest district in the nation are almost too numerous to count. But a few differences are important to highlight when it comes to student achievement.

At the beginning of the NCLB era, underachievement in Chicago schools had already been under a national microscope for close to a decade and a half . . . starting with the day in 1987 when Secretary of Education William Bennett called Chicago schools “worst in the nation.” By January 2002, the district was well into its second decade of high-profile reform, including five years of high-stakes accountability based mostly on standardized test scores.

By contrast, the sample district from central Illinois entered NCLB with reading and math achievement that was averaging a little better than national norms. For most districts achieving at this level, early accountability reports under NCLB offered little cause for concern. It wasn’t until 2010 that NCLB required more than 75% of students in multiple sub-groups to meet Illinois proficiency benchmarks. Only then did mid-range and higher-achieving districts begin to have problems meeting NCLB’s Adequate Yearly Progress (AYP) requirements. Those problems accelerated in 2011 when the AYP bar moved to 85%, and again in 2012 when the bar was raised to 92.5%.

For most Illinois districts, a bigger problem than making AYP was that the state test reports they received for grades 3 through 8 were badly misaligned and wildly misleading\(^8\). The
districts that were most severely impacted by this problem were smaller, less wealthy ones that relied on state reports for all or most of their standardized test information.

There were two especially egregious problems with state assessment reports at grades 3-8. The first was that official communications were never very clear about what “meeting rigorous state standards” meant in relation to state and national norms. Many people knew that Illinois’ bar was set pretty low. But most did not imagine that “low” meant two years below grade level. This lured many otherwise well-informed educators, parents and policy makers into thinking that their districts were doing pretty well when achievement at higher levels was actually in decline.

A second, related problem was that “exceed standards” benchmarks were set so high that the space in between “meet” and “exceed” was typically three or more grade equivalents. This meant that test results for grades 3 through 8 had little practical value for most educators:

- “Academic warning” and “below standards” reported the percent of students who scored two or more years below state and national norms.
- “Meet standards” reported the percent of students who scored somewhere between two years below grade level and two years above grade level.
- “Exceed standards” reported the percent of students who scored two or more years above state and national norms.

Without fairly sophisticated analysis, it was impossible to know what was happening inside that very wide range called “meeting standards.” At the school and district level, average achievement could move up or down by a full grade level or more and still not change the percent of students who met or exceeded standards.

Looking for More Detailed Analysis of Problems with Statewide Test Reportage under NCLB?

There is no direct evidence that any of the issues described above had any impact on achievement in the sample central Illinois district that is featured in this report. What is clear is that reporting systems that promised to provide high-quality, standards-based information to educators, parents and policy makers fell way short of their promise under NCLB. At best, failure to keep districts well informed about how they were doing wasted millions of dollars annually. At worst, this failure kept many districts from monitoring their own progress in meaningful ways and intervening appropriately when achievement showed signs of decline.

Whatever it was that led to achievement declines in the sample district from central Illinois, and to sustained growth in Chicago, the net effect was that average achievement in both districts was close to identical in 2016. Figure 4.4 shows that a little over 40% of students in each district scored at or above statewide medians in 2016 . . . just short of the 2016 median for all LUDA districts.

Figure 4.4

Confronting the Challenges of Big, Low-Income Enrollment Takes Time, Good Information, Persistence and Political Will

LIMITED PRIOR EXPERIENCE WITH LARGE, LOW-INCOME ENROLLMENT CONTRIBUTED TO BIG ACHIEVEMENT DROPS IN THIS MOSTLY WHITE DISTRICT IN CENTRAL ILLINOIS

SHIFTING DEMOGRAPHICS AND YEARS OF EFFORT TO INCREASE SCHOOL AND DISTRICT EFFECTIVENESS CONTRIBUTED TO BIG GAINS IN MOSTLY LOW-INCOME, MOSTLY NON-WHITE CHICAGO

Composite 3-8 Reading

Percent of Students Scoring At or Above Statewide Medians

Composite 3-8 Math

Percent of Students Scoring At or Above Statewide Medians

Achievement Compared with 54 Other LUDA Districts

[Graph showing data for Central Illinois District and Chicago District with percentages for 2001 and 2016]
Under NCLB, some of Chicago’s achievement growth was simply a result of changing demographics. On average, for example, the percentage students in grades 3-8 who score at or above statewide medians is currently about 12 points higher among Latino students than it is among black students19. Between 2001 and 2016, Latino enrollment in Chicago increased by 11 points and black enrollment decreased by 13 points. The net effect was a rise in overall achievement that just reflected changes in who was being tested. This does nothing to diminish Chicago’s gains; it simply helps explain an important part of them.

A key feature of achievement growth in Chicago was that it was equally strong across the full range of attainment levels. The three charts in Figure 4.5 show how 4th grade math scores changed over time at the 25th, 50th and 75th percentile of NAEP scoring distributions for Chicago and the State of Illinois. Chicago changes are shown in blue. Changes for the State of Illinois (including Chicago) are shown in green20.

Figure 4.5

Changes over Time in Scale Scores for 4th Grade NAEP Math at the 25th, 50th and 75th Percentile of Chicago and State of Illinois Scoring Distributions

Figure 4.5 tells at least two important stories. The first is that Chicago gains were equally strong at all three attainment levels. This belies the folk wisdom that holds growth at lower
attainment levels is somehow easier to obtain than growth at higher levels. In Chicago, the evidence suggests that the opposite was true. Scale scores at the 25th percentile rose by 14 points between 2003 and 2015. At the 50th percentile, they rose by 18 points. At the 75th percentile, they rose by 22 points.

A second, more ominous story from Figure 4.5 is that the health of statewide NAEP scores under NCLB has been far more dependent on growth in Chicago than most of us might have imagined. Chicago’s blue-line scores account for about 20% of the green-line scores for the state as a whole which include Chicago. In recent years, at all three attainment levels, the main development that kept flattening statewide scores from outright decline was steep and continuing growth in Chicago.

Achievement Results that Control for Race and Family Income Combined

Growth in achievement is always worth celebrating and declines are always a cause for concern. But school effectiveness is the only part of growth or decline that schools and districts can actually control. An important question to ask about any achievement change is, “What is this telling us about changes in school effectiveness?”

A key shortcoming of reporting practices under NCLB is that they typically failed to account for the *combined* impact of race, family income and other demographic factors that have well-documented relationships with achievement. For example, meaningful comparisons of two Latino populations quickly fall apart if Latino Group A is 75% low-income and 50% English language learners and Latino Group B is 10% low-income and 5% English language learners.

In Chicago under NCLB, there were big jumps in Latino enrollment, big declines in black enrollment and increasing gentrification in many Chicago neighborhoods. So how much of Chicago’s growth was simply due to changing demographics? Figure 4.6 takes a first run at answering that question by breaking down 3rd grade reading achievement into sub-groups that control simultaneously for race and family income. To preserve comparability within and across test populations, students temporarily identified as English Language Learners (ELL) have been removed from the mix:

- Charts on the left side of Figure 4.6 show achievement in Chicago. Charts on the right show achievement in the rest of Illinois excluding Chicago.
- Charts at the top of Figure 4.6 show achievement for students who were eligible for free or reduced lunch. Charts at the bottom show achievement for students who were not eligible for free or reduced lunch.
- Purple lines represent black students, tan lines represent Latino students and blue lines represent white students.
• Charts for grades 3-8 in both reading and math19 follow similar patterns to those shown in Figure 4.6.

Charts at the top of Figure 4.6 show that school effectiveness in 3rd grade reading moved steadily upward in Chicago among low-income, white and Latino students but was mostly flat in the rest of Illinois. Since 2012, school effectiveness among black third graders from low-income households flattened in Chicago and slowly declined in the rest of Illinois.

Charts at the bottom of Figure 4.6 show that, in Chicago, school effectiveness continued to rise among black, Latino and white third graders from middle and upper income households. In the rest of Illinois, school effectiveness with comparable groups of Latino and white students flattened at substantially lower attainment levels than Chicago, and slowly declined with comparable groups of black students.

Figure 4.6

Percent of Non-ELL Students Scoring At or Above Statewide Medians in Third Grade Reading: 2001-2016
Section 5
SOME PROMISING OPPORTUNITIES TO SUPPORT SCALED IMPROVEMENTS IN SCHOOL AND DISTRICT EFFECTIVENESS

Fifteen years after No Child Behind was signed into law, race and family income still predict standardized test scores with remarkable accuracy in most school districts. But unlike fifteen years ago, the connections between low-income enrollment and lower achievement are now being enacted with the same depressing regularity in predominantly white communities as they have for years in low-income communities of color. When it comes to academic achievement, the clear message of this report is that economic distress is an equal opportunity disrupter.

Another, more hopeful message is that growth in school effectiveness in some communities is blunting, and in some cases reversing, declines that are typically associated with race and family income. Large scale gains in school effectiveness in Chicago and suburban Chicagoland, and more isolated gains in individual districts across the state, offer good evidence that demographics are not the only important influence on student learning outcomes.

A key lesson from America’s experiment with No Child Left Behind is that state and federal policy have not been effective in strengthening school effectiveness at scale. In the end, school effectiveness is a local challenge that cannot be successfully confronted without local determination, local ingenuity and local leadership.

But statewide policies create the conditions in which schools and districts operate. Those conditions influence the likelihood that improvements in school effectiveness will or won’t gain traction at the local level. We end this report by recommending three shifts in state policy that would boost the odds for growing school effectiveness at scale in every region of the state.
RECOMMENDATION 1
COMMIT TO MORE USEFUL AND RESPONSIBLE TEST REPORTAGE

In 2011, the University of Chicago’s Consortium on Chicago School Research reviewed two decades of student-level data to assess the progress of school reform in Chicago. A key finding of that study was that most publicly reported data were “simply not useful” for gauging actual progress in student achievement.

Chicago has not only been at the forefront of school reform policies but has also been ahead of most of the rest of the country in collecting data tracking student and school performance. Yet, even with a heavy emphasis on data use and accountability indicators, the publicly reported statistics that are used by CPS and other school districts to gauge progress are simply not useful for measuring trends over time. . . . As there is a greater push at both the state and federal level to use data to judge student and school progress, we must ensure that the statistics that are used are comparable over time. Otherwise, future decisions about school reform will be based on flawed statistics and a poor understanding of where progress has been made.

Trends in Chicago’s Schools across Three Eras of Reform, Luppescu et.al. (2011) p.8

Statewide reporting practices for grades 3-8 under NCLB had an even bigger problem. At a cost of close to $350 million, Illinois test reports systematically misrepresented what state standards actually called for, and under-reported what tests actually assessed. Worse yet, they created an alternate universe of diagnostic information that tacitly endorsed rote learning and left parents, educators and policy makers in the dark about what was actually going on. Statewide reporting practices share much of the responsibility, but none of the accountability, for the failings of the era.

In the early days of NCLB, the National Research Council (NRC) published a report called Assessment in Support of Instruction and Learning: Bridging the Gap between Large-Scale and Classroom Assessment. This report:

- highlighted big differences in what local and large scale assessments are able to do;
- described the limitations of both local and large scale assessments, and underscored the need to integrate their results to support improved teaching and learning;
- outlined promising ways to use both local and large scale assessments to support deep improvements in school effectiveness.

The report’s recommendations were almost universally ignored. On their face, they seemed too complicated and too labor-intensive to help lower-achieving schools and districts make the big and immediate gains that high-stakes accountability required.

What looked like a better bet were commercial “interim” assessments that claimed to do standards-based diagnostics more quickly and more completely than classroom teachers could.
In Illinois, the logic for adopting commercial interim assessments got even stronger in 2010 when hard measures of achievement growth became a required part of teacher and principal evaluations\(^\text{25}\).

Years later, there is still no compelling evidence that commercial assessment systems are helping teachers move the needle on achievement\(^\text{26}\). Nevertheless, schools and districts across the state continue to spend millions of dollars and thousands of instructional hours each year in hopes that they will. Figure 4.6 illustrates how ineffectual this investment has been for virtually all student populations outside of Chicago, and for most of the low-income black students in Chicago who make up over 35% of total district enrollment.

State and local leaders can’t turn back the clock or return lost time and money. But big improvements in large-scale test design, and recent increases in the flexibility of federal law, offer a once-in-a generation opportunity to fulfill the original promise of standards-based assessment. To do that, our leaders need to:

- **STOP** pretending that deep improvements in formative assessment can be finessed by sidestepping teachers and outsourcing the work to external testing organizations;
- **STOP** reporting standardized test results in ways that misrepresent what tests actually assess;
- **STOP** using standardized tests to reinforce a culture of grading and sorting that has long been a fixture of assessment practice in American schools\(^\text{27}\);
- **START** making standardized tests part of the solution by reporting item-level results in ways that help teachers improve the depth and quality of their own assessment practices\(^\text{28}\).

RECOMMENDATION 2

FOLLOW THROUGH ON EARLY ADVANCES IN LEADERSHIP PREPARATION AND SUPPORT

Organizing Schools for Improvement (2010)\(^\text{29}\) is a foundational text in the literature on school effectiveness. Based on two decades of research deep inside Chicago schools, it identifies five essential supports that consistently sponsor odds-breaking achievement gains across a wide range of schools and student populations. Those supports are:

- Effective leaders
- Supportive environment
- Involved families
- Ambitious instruction
- Collaborative teachers.
Schools that rate highly on three or more of the five essential supports are 10 times more likely to achieve at high levels than schools that rate poorly on three or more supports. Charles Payne, author of *So Much Reform, So Little Change* (2008) offers a more pointed description of how the five essentials work. He says, “Effective leaders plus any other two”30 make a school 10 times more likely to be highly effective.

During No Child Left Behind, Illinois received national recognition for its policies on school leader preparation and development. The Education Commission of the States, the University Council on Educational Administration, and the Wallace Foundation all pointed to the rigor and comprehensiveness of Illinois policy as a model for other states31. Chicago has also been repeatedly recognized for its aggressive implementation of state leadership development policy by *Education Week, New York Times* and more recently by the George W. Bush Institute’s Alliance for Educational Leadership.

To build on this momentum, a state-wide group of stakeholders representing districts, higher education, Illinois teacher and leader professional associations and others came together in 2015 as the Illinois School Leader Advisory Council (ISLAC, 2016). Supported by Wallace Foundation and McCormick Foundation funding, this group invested the better part of a year in its work. Co-author Steve Tozer co-chaired ISLAC’s work along with LUDA Executive Director, Diane Rutledge. Co-author Paul Zavitkovsky was also an ISLAC contributor.

The ISLAC Final Report begins by pointing out that, “The single most important district decision made with respect to student learning outcomes may be the choice of school principals.” The National Governor’s Association helps explain why:

Indeed, the success of efforts to raise educational attainment school-wide hinges on school principals. Principals who are well prepared and empowered by their districts to lead can, through their roles as instructional leaders and human capital managers, ensure that all the teachers and student in their schools benefit from new educational standards. In that way, principals can be viewed as multipliers of good practice—when principal are effective in leading implementation, they influence every person in the school. Governors and other state policymakers can achieve deeper, wide-scale improvement in the effectiveness of teachers by investing in the knowledge and skills of principals33.

While it is clear that Illinois has received considerable recognition for its policies, the ISLAC stakeholders emphasized that strong policy is just the first step:

While Illinois has been recognized as a pioneering state in its focus on school leader preparation, there is still much more work to do. A key message of this report is that policy implementation requires even more attention than policy formation, and that implementation needs to be reworked and refined over time to be successful. Three decades of high-profile school reform that has not accomplished its goals make it clear that new ways of thinking about professional learning are needed—in higher education and in school districts—to improve the quality of student and adult learning in schools. Deep reform of the way we prepare and support school leaders is one of the most promising examples we have of this new thinking34.
While this is not the place to review all of the ISLAC recommendations, it is worthwhile to revisit the key elements of the vision put forward in the ISLAC report:

Illinois will prepare and support school leaders through effective programs that are:

- Designed to improve a wide range of student learning outcomes in schools through high quality school leadership;
- Highly selective in admissions;
- Committed to strong school-based learning as an essential component to leadership development;
- Designed, implemented, and assessed in partnership with school districts in service of accomplishing all of the above;
- Sustainable through state, regional and local support, including financial support that supports robust field-based supervision and assessment of candidates;
- Networked for continuous improvement and collective impact statewide; and,
- Increasingly regarded nationwide as a model for how principal preparation and development can become a more effective lever for improving student learning outcomes in schools.

The ISLAC Final Report outlined how such a vision can be achieved in practice in Illinois. Broadly speaking, ISLAC recommends:

1. increasing state agency leadership for improving principal preparation (ISBE and IBHE);
2. establishing state-wide networks and communities of practice for meeting the needs of rural, suburban, and urban Illinois;
3. increasing state and local commitment to extensive, school-based learning as a part of the required training for every new principal.

We endorse these recommendations here. We also encourage all readers of this report to consult the ISLAC Final Report at https://news.illinoisstate.edu/2016/03/illinois-school-leadership-advisory-council-islac-final-report-released/

The ISLAC Final Report concludes by illustrating how cost-effective the investment in improved preparation and support for school leaders actually is. At a 10% turnover rate, only about 400 new principals per year need to be prepared and supported by the 26 programs throughout Illinois that are currently approved to train school leaders. Making the same per-capita investment in clinical supervision for this group that we currently make for student teachers would be a small investment. But the potential for extraordinary outcomes is very high.

No Child Left Behind legislation made no provisions for the preparation and support of new principals. Yet Chicago’s work in this area clearly contributed to the remarkable progress the city was able to make under NCLB. Now, the Every Student Succeeds Act (ESSA) offers direct federal support for Illinois to scale up implementation of its nationally-recognized policies for
preparing and developing school leaders. Stepping up and taking full advantage of this legislation will make it possible to spread the benefits of improved leadership development to every district in the state.

We conclude this recommendation with one final observation from the ISLAC Final Report:

As our expectations for schools rise, our expectations for school leaders have risen; if we expect more from school leaders, then our expectations for the programs that prepare and develop them must be elevated as well."

RECOMMENDATION 3

RISE TO THE STATE CONSTITUTION’S CHALLENGE TO SUPPORT

“THE EDUCATIONAL DEVELOPMENT OF ALL PERSON’S TO THE LIMIT OF THEIR CAPACITIES”

Jimmie Aycock is a former 5-term representative in the Texas state legislature. A life-long Republican, much of Aycock’s reputation as a legislator and Chair of the House Public Education Committee was based on his unsuccessful effort to create a more equitable school funding formula. He shared this observation with his colleagues when he left the legislature in 2015:

We think in terms of black kids and brown kids and white kids. We think of poor kids and rich kids, kids from small districts and kids from larger districts. And we each come here representing our subset of kids, and that's how the process works.

Then he asked,

What will it take to fix school finance?

His answer,

It'll take a common view of [the state's] 5.2 million children without dividing them into sub-groups.

The spirit of Aycock’s advice was not much different from the spirit that led Ronald Edmonds to observe in the late 1970s that,

We can, whenever and wherever we choose, successfully teach all children whose schooling is of interest to us. We already know more than we need to do that. Whether or not we do that must finally depend on how we feel about the fact that we haven’t so far.

One clear indicator of whose schooling is of interest to us is the way we raise and distribute money for public schools. In most American states, equitable funding of schools has been problematic at best. But even by that low bar, Illinois still ranks 50th of 50 in its commitment to equitable school funding. The harsh truth is that Illinois has been less committed than any other state in the nation to making everyone’s children everyone’s priority.

More equitable funding of Illinois schools is just one piece of a complicated school improvement puzzle. In the same way that gains in school effectiveness cannot fully
compensate for deep inequities in the wider culture, more equitable funding will not resolve all, or even most, of the disparities that are described in this report. But if funding were unimportant, the state’s wealthiest communities would not be spending up to $20,000 per student more than the statewide median to support their own local schools.

What equitable funding communicates is a collective belief that everyone benefits from educating everyone else’s children well. Absent that belief, and the commitment to support it, the chances of making scaled improvements in student learning and school effectiveness, in Illinois or any other state, are severely and unnecessarily limited.

It is important to recognize that funding inequities do not just damage children and youth. They also burden taxpayers with hundreds of millions of dollars in future costs for long-term health care, social services and, in the worst case, imprisonment of under-educated and under-employed adults^39^.

Better assessment practices and improved leadership development are already improving school effectiveness in many districts. Supporting these powerful levers with more equitable funding is an essential next step toward offering all of Illinois’ children the education they deserve . . . and that all of us need them to have.
ENDNOTES

2. In December 2004, a disgruntled American soldier challenged Secretary of Defense Donald Rumsfeld to explain why his unit had to rummage through trash heaps for scrap metal they could use to strengthen the armor of their Humvees. Rumsfeld famously responded, “You go to war with the army you have . . . not the army you might want or wish to have at a later time.” In 2001, the “army we had” for revolutionizing large-scale assessment design was big banks of norm-referenced test items and close to a century of experience building tests that compared students with each other rather than to mastery of specific content standards. It was mostly these resources that the testing industry relied on to build large scale, “standards-based” assessments. The result was that most of what came to be called standards-based testing under NCLB was actually just conventional, norm-referenced testing dressed up in standards-based clothing.

5. The webpage for the Simi Valley Unified School District is: http://www.simik12.ca.us/

6. The webpage for Charlotte-Mecklenburg Public Schools is: http://www.cms.k12.nc.us/Pages/default.aspx

7. For example, in their classic article on formative assessment called “Inside the Black Box” (*Kappan*, 80:2, 1998), Paul Black and Dylan Wiliam estimated that average growth of 1.5 grade levels (0.75 standard deviations) would move the United Kingdom from the middle of the scoring range on the Third International Math and Science Study (TIMSS) into the top 5 of all 41 participating nations.

10. Most Illinois achievement results were within the confidence range of national averages on the National Assessment of Educational Progress (NAEP) throughout the NCLB era. For more details, see https://nces.ed.gov/nationsreportcard/statecomparisons/
11. Files containing de-identified, student-level demographic and scoring information for all Illinois public school students from 2006 onward are available online at ftp://ftp.isbe.net/SchoolReportCard/

12. Between 2006 and 2014, median scale scores for both reading and math on the Illinois Standards Achievement Test (ISAT) rose moderately at all grade levels tested statewide. Average, 8-year increases were 1 scale point in composite 3-8 reading and 3 scale points in composite 3-8 math. This means it was slightly harder to score at or above the statewide median in 2014 than it was in 2006. Shifts in ISAT reading and math medians closely matched comparable changes in NAEP medians at grades 4 and 8.

13. For more information on district-by-district differences in per pupil funding in Illinois, see: http://rebootillinois.com/2016/05/05/these-25-illinois-school-districts-spent-the-most-and-least-per-pupil-in-2015/57153/

14. All of Illinois’ statewide accountability exams have generated near-normal, bell-curve distributions. “Standards-based” proficiency levels under NCLB were based on cut scores that were placed more or less arbitrarily at different locations on those distributions. By contrast, results reported in grade equivalents use stanine ranges (half-standard deviation units) to standardize the boundaries of proficiency ranges. This creates a more statistically defensible way of reporting proficiency levels than those used in Illinois throughout most of the NCLB era.

16. These estimates are based on the demographics of all students tested statewide in grades 3, 5 and 8 in 2001

17. For comparability with 2001, these estimates are based on the demographics of all students tested statewide in grades 3, 5 and 8 in 2016

18. Early in the NCLB era, Andrew Ho, now Professor of Education at the Harvard Graduate School of Education, warned that proficiency benchmarks fatally distort standardized measures of academic progress. In “The Problem with ‘Proficiency’: Limitations of Statistics and Policy under No Child Left Behind,” Ho wrote, “The limitations are unpredictable, dramatic, and difficult to correct in the absence of other data. Interpretation of these depictions generally leads to incorrect or incomplete inferences about distributional change.” The full text of “The Problem with Proficiency” is available at: http://journals.sagepub.com/doi/abs/10.3102/0013189X08323842. In a 2007 report called The Proficiency Illusion, Cronin, Dahlen, Adkins, and Kingsbury found that cut scores for meeting Illinois math standards in grades 3-8 were all set at the 20th percentile or below compared with national norms. The 20th percentile is a little below the conventional statistical boundary for scores that are 2 or more years below grade level. The full text of The Proficiency Illusion is available at: https://edexcellence.net/publications/theproficiencyillusion.html. In a 2010, co-author Paul Zavitkovsky demonstrated that so-called “standard strands” that are widely used to report skill-based diagnostic information to teachers and parents consistently co-vary with one another and have no meaningful
In 2012, Zavitkovsky showed identical results in an examination of standard strands (sometimes
called “power standards”) that purported to provide diagnostic information from standardized tests
in the ACT/EPAS sequence for 8th, 9th and 10th graders (see http://ierc.education/wp-
content/uploads/2014/09/Compendium_2012.pdf). Findings from both studies are summarized in
Section 8 “Morphing Standards into Skills” of Zavitkovsky, P., Roarty, D. and Swanson, J. (2016)
Taking Stock: Achievement in Illinois under NCLB at http://www.urbanedleadership.org/
19. In 2016, 42% of Latino students in Chicago scored at or above statewide medians for composite
reading and math in grades 3-8; the comparable percentage of black students who scored at or
above statewide medians in 2016 was 30%.
20. Comparable graphics that describe changes in reading and math achievement over time in the
elementary and middle grades are posted at http://www.urbanedleadership.org/
21. The full contents of this report are available at:
22. Contrary to stereotype, higher scale scores on standardized tests have at least as much to do with
the depth and breadth of student thinking as they do with the volume of discrete skills and concepts
that students have mastered. Some of the earliest evidence for this claim during the NCLB era is
presented in a 2001 study by the Chicago Consortium on School Research called, Authentic
Intellectual Work and Standardized Tests: Conflict or Co-Existence. This study is available online at:
http://consortium.uchicago.edu/sites/default/files/publications/p0a02.pdf. Additional evidence can be
found in Section 7 of UIC’s (2016) Taking Stock study titled, “What Do Standardized Tests Actually
Measure?” available online at http://www.urbanedleadership.org/.
23. Tests like the ISAT and ACT were well equipped to measure instructional impact on general
knowledge, but poorly designed to return standard-specific information to teachers and parents.
Test makers finessed this problem by inventing “standard strands,” “content strands” and “power
standards” that purported to measure mastery of specific standards. They did that knowing full well
that standardized test items almost always measure more than one standard at a time, and are less
about specific skills than about students’ ability to size up and work through different kinds of
academic complexity.
24. The full contents of this report are available at: https://www.nap.edu/catalog/10802/assessment-in-
support-of-instruction-and-learning-bridging-the-gap
25. For more information about Illinois’s Performance Evaluation Reform Act (PERA) see:
http://www.iasb.com/law PERAoverview.pdf?v=0117
26. Three independent studies of disappointing results associated the use of interim assessments are
available at: http://www.air.org/resource/impact-measures-academic-progress-map-program-student-
reading-achievement, http://blogs.edweek.org/edweek/inside-school-
research/2014/04/large_study_suggests_that_inte.html and
27. See, for example, Guskey, Thomas R. (2015) On Your Mark. Bloomington: Solution Tree Press, and
Association for Supervision and Curriculum Development
28. The late Grant Wiggins, co-author of *Understanding by Design*, was a strong advocate for using released test items to help deepen teacher understanding of what standardized tests actually assess. He also asserted that the weakest link by far in the assessments we do is the depth and quality of local, classroom assessments. For a fuller description of Wiggins’ views, see “Why We Should Stop Bashing State Tests” available online at http://www.ascd.org/publications/educational-leadership/mar10/vol67/num06/Why-We-Should-Stop-Bashing-State-Tests.aspx. Additional discussion of chronic weaknesses in local assessment practices can be found in the works of Guskey (2015) and Brookhart (2010) that are cited in endnote 26.

35. Ibid. p. 26

36. Ibid. p. 20

37. For more on Aycock’s story and fuller discussion of school funding in America, see the National Public Radio series on school funding http://www.npr.org/series/473636949/schoolmoney

APPENDIX A

Relationships between Equalized Assessed Valuation, Instructional Spending and School Effectiveness

Chicago and Suburban Chicagoland vs.

Northern Illinois

Equalized assessed valuation (EAV) is the measure used by the Illinois State Board of Education to represent taxable property values in local school districts. Per pupil spending for instruction includes expenditures that directly support instruction but excludes other costs of district operations.

While deep analysis of the relationship between school funding and school effectiveness is beyond the scope of this report, regional shifts in school effectiveness during the NCLB era correspond quite closely with regional shifts in local property values and per pupil spending for instruction.

The two pages that follow summarize shifts in school effectiveness, EAV and per pupil instructional spending in suburban Chicagoland, and compare them with similar shifts in northern Illinois.

- Trends in school effectiveness between 2001 and 2016:
 - On average, school effectiveness in Chicago and suburban Chicagoland increased by about 10 points across the entire low-income continuum.
 - On average, school effectiveness in northern Illinois rose in wealthier districts but remained unchanged at the lower end of the low-income continuum.

- Trends in per pupil EAV between 2001 and 2016:
 - Substantial dollar growth in both suburban Chicagoland and northern Illinois.
 - The percent of parity between northern Illinois and suburban Chicagoland stayed roughly constant across the full low-income continuum.

- Trends in per pupil instructional spending between 2001 and 2016:
 - Substantial dollar growth in both suburban Chicagoland and northern Illinois.
 - The percent of parity between northern Illinois and suburban Chicagoland districts:
 - increased in districts with low-incidence of low-income enrollments
 - decreased in districts with mid-range and high incidence of low-income enrollment.
On Average, Chicago and Suburban Chicagoland Districts Had Big, Upward Shifts in School Effectiveness at All Points on the Low-income Continuum between 2001 and 2016

15-Year Shifts in Equalized Assessed Valuation (EAV) Per Pupil and Per Pupil Spending for Instruction in Suburban Chicagoland: 2001 to 2016

Districts with Low Incidence, Mid-Range and High Incidence of Low-Income Enrollment

Equalized Assessed Valuation Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$230,240</td>
<td>$169,520</td>
<td>$87,562</td>
</tr>
<tr>
<td>2016</td>
<td>$423,391</td>
<td>$266,850</td>
<td>$129,769</td>
</tr>
</tbody>
</table>

Instruction Spending Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$4,478</td>
<td>$4,036</td>
<td>$3,820</td>
</tr>
<tr>
<td>2016</td>
<td>$7,147</td>
<td>$7,500</td>
<td>$6,400</td>
</tr>
</tbody>
</table>
Between 2001 and 2016, School Effectiveness in Northern Illinois Rose in Wealthier Districts but Stayed Constant in Most Districts at the Lower End of the Low-Income Continuum

Percent of EAV Parity with Suburban Chicagoland Was Roughly Constant under NCLB; Percent of Instructional Spending Parity Declined under NCLB except in Wealthier Districts

Districts with Low Incidence, Mid-Range and High Incidence of Low-Income Enrollment

<table>
<thead>
<tr>
<th>Equalized Assessed Valuation Per Pupil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Incidence</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction Spending Per Pupil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Incidence</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Incidence</td>
<td>44%</td>
<td>49%</td>
</tr>
<tr>
<td>Middle Range</td>
<td>51%</td>
<td>53%</td>
</tr>
<tr>
<td>High Incidence</td>
<td>77%</td>
<td>75%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Incidence</td>
<td>78%</td>
<td>85%</td>
</tr>
<tr>
<td>Middle Range</td>
<td>91%</td>
<td>82%</td>
</tr>
<tr>
<td>High Incidence</td>
<td>102%</td>
<td>94%</td>
</tr>
</tbody>
</table>
The remaining pages of Appendix A summarize shifts in achievement and demographics in each of the 9 northern Illinois districts that are members of the Large Unit District Association.
Shifts in Achievement and Demographics in the 9 Member Districts of the Large Unit District Association in NORTHERN ILLINOIS

- Belvidere 100
- DeKalb 428
- Freeport 145
- Harlem 122
- Oswego 308
- Rockford 205
- Sterling 5
- Sycamore 427
- Yorkville 115
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Belvidere District 100

READING

In 2001

27%

50%

In 2016

39/41%

MATH

In 2001

23%

52%

In 2016

41%

DeKalb District 428

READING

In 2001

27%

60%

In 2016

39/41%

MATH

In 2001

23%

56%

In 2016

41%
Demographic Changes 2001 through 2016

Belvidere District 100

All Illinois

Enrollment in Grades 3-8

DeKalb District 428

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Freeport District 145

READING

- **In 2001**: 27% Chicago 299, 42% Freeport 145
- **In 2016**: 29% Chicago 299, 41% Freeport 145

MATH

- **In 2001**: 23% Chicago 299, 39% Freeport 145
- **In 2016**: 28% Chicago 299, 41% Freeport 145

Harlem District 122

READING

- **In 2001**: 27% Chicago 299, 45% Harlem 122
- **In 2016**: 41% Chicago 299, 45% Harlem 122

MATH

- **In 2001**: 23% Chicago 299, 43% Harlem 122
- **In 2016**: 41% Chicago 299, 43% Harlem 122
Demographic Changes 2001 through 2016

Freeport District 145

<table>
<thead>
<tr>
<th>Year</th>
<th>% Low Income</th>
<th>% Multi-Racial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>68</td>
<td>10</td>
</tr>
</tbody>
</table>

All Illinois

<table>
<thead>
<tr>
<th>Year</th>
<th>% Low Income</th>
<th>% Multi-Racial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>68</td>
<td>10</td>
</tr>
</tbody>
</table>

Enrollment in Grades 3-8

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1,841</td>
</tr>
<tr>
<td>2016</td>
<td>1,756</td>
</tr>
</tbody>
</table>

Harlem District 122

<table>
<thead>
<tr>
<th>Year</th>
<th>% Low Income</th>
<th>% Multi-Racial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>68</td>
<td>10</td>
</tr>
</tbody>
</table>

All Illinois

<table>
<thead>
<tr>
<th>Year</th>
<th>% Low Income</th>
<th>% Multi-Racial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>68</td>
<td>10</td>
</tr>
</tbody>
</table>

Enrollment in Grades 3-8

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>3,911</td>
</tr>
<tr>
<td>2016</td>
<td>2,956</td>
</tr>
</tbody>
</table>
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Oswego District 308

READING
- In 2001: 27%
- In 2016: 65%

MATH
- In 2001: 63%
- In 2016: 68%

Rockford District 205

READING
- In 2001: 27%
- In 2016: 41%

MATH
- In 2001: 23%
- In 2016: 30%
Demographic Changes
2001 through 2016
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Sterling District 5

READING

- In 2001: 27%
- In 2016: 41%

MATH

- In 2001: 23%
- In 2016: 41%

Sycamore District 427

READING

- In 2001: 27%
- In 2016: 41%

MATH

- In 2001: 23%
- In 2016: 41%
Demographic Changes 2001 through 2016

Sterling District 5

All Illinois

Sycamore District 427

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Yorkville District 115

READING

- In 2001: 27%
- In 2016: 41%

MATH

- In 2001: 23%
- In 2016: 41%
Demographic Changes
2001 through 2016

Yorkville District 115

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8
APPENDIX B

Relationships between Equalized Assessed Valuation, Instructional Spending and School Effectiveness

Chicago and Suburban Chicagoland vs. Central Illinois

Equalized assessed valuation (EAV) is the measure used by the Illinois State Board of Education to represent taxable property values in local school districts. Per pupil spending for instruction includes expenditures that directly support instruction but excludes other costs of district operations.

While deep analysis of the relationship between school funding and school effectiveness is beyond the scope of this report, regional shifts in school effectiveness during the NCLB era correspond quite closely with regional shifts in local property values and per pupil spending for instruction.

The two pages that follow summarize shifts in school effectiveness, EAV and per pupil instructional spending in suburban Chicagoland, and compare them with similar shifts in central Illinois.

- Trends in school effectiveness between 2001 and 2016:
 - On average, school effectiveness in Chicago and suburban Chicagoland increased by about 10 points across the entire low-income continuum.
 - On average, school effectiveness in central Illinois remained unchanged across the entire low-income continuum.

- Trends in per pupil EAV between 2001 and 2016:
 - Substantial dollar growth in both suburban Chicagoland and central Illinois.
 - Percent of parity between central Illinois and suburban Chicagoland districts:
 - stayed constant in districts with low incidence of low-income enrollments
 - increased in districts with mid-to-high incidence of low-income enrollments.

- Trends in per pupil instructional spending between 2001 and 2016:
 - Substantial dollar growth in both suburban Chicagoland and central Illinois.
 - Percent of parity between central Illinois and suburban Chicagoland districts:
 - stayed constant in districts with low incidence of low-income enrollments
 - decreased in districts with mid-to-high incidence of low-income enrollments.
On Average, Chicago and Suburban Chicagoland Districts Had Big, Upward Shifts in School Effectiveness at All Points on the Low-income Continuum between 2001 and 2016

15-Year Shifts in Equalized Assessed Valuation (EAV) Per Pupil and Per Pupil Spending for Instruction in Suburban Chicagoland: 2001 to 2016

Districts with Low Incidence, Mid-Range and High Incidence of Low-Income Enrollment

Equalized Assessed Valuation Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$230,240</td>
<td>$169,520</td>
<td>$87,562</td>
</tr>
<tr>
<td>2016</td>
<td>$423,391</td>
<td>$266,850</td>
<td>$129,769</td>
</tr>
</tbody>
</table>

Instruction Spending Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$4,478</td>
<td>$4,036</td>
<td>$3,820</td>
</tr>
<tr>
<td>2016</td>
<td>$7,147</td>
<td>$7,500</td>
<td>$6,400</td>
</tr>
</tbody>
</table>
On Average, School Effectiveness in Central Illinois Districts Stayed Constant at All Points on the Low-Income Continuum between 2001 and 2016

Percent of EAV Parity with Suburban Chicagoland Increased under NCLB; Percent of Instructional Spending Parity Declined under NCLB

Districts with Low Incidence, Mid-Range and High Incidence of Low-Income Enrollment

Equalized Assessed Valuation Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$87,812</td>
<td>$75,116</td>
<td>$60,310</td>
</tr>
<tr>
<td>38%</td>
<td>38%</td>
<td>44%</td>
<td>69%</td>
</tr>
<tr>
<td>2016</td>
<td>$154,278</td>
<td>$132,672</td>
<td>$100,882</td>
</tr>
<tr>
<td>36%</td>
<td>50%</td>
<td>78%</td>
<td></td>
</tr>
</tbody>
</table>

Instruction Spending Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$3,470</td>
<td>$3,893</td>
<td>$3,876</td>
</tr>
<tr>
<td>77%</td>
<td>77%</td>
<td>91%</td>
<td>102%</td>
</tr>
<tr>
<td>2016</td>
<td>$5,580</td>
<td>$5,425</td>
<td>$5,640</td>
</tr>
<tr>
<td>78%</td>
<td>76%</td>
<td>85%</td>
<td></td>
</tr>
</tbody>
</table>
The remaining pages of Appendix B summarize shifts in achievement and demographics in each of the 17 central Illinois districts that are members of the Large Unit District Association.
Shifts in Achievement and Demographics in the 17 Member Districts of the Large Unit District Association in CENTRAL ILLINOIS

- Ball-Chatham 5
- Bloomington 87
- Champaign 4
- Danville 118
- Decatur 61
- Dunlap 323
- Galesburg 205
- Jacksonville 117
- Kankakee 111
- Mattoon 2
- McLean County 5
- Moline-Coal Valley 40
- Peoria 150
- Quincy 172
- Rock Island 41
- Springfield 186
- Urbana 116
Shifts in Percent of Students in Grades 3-8
Scoring At/Above Statewide Medians in LUDA Districts

Ball-Chatham District 5

READING
In 2001
27%
In 2016
41%

MATH
In 2001
67%
In 2016
56%

Bloomington District 87

READING
In 2001
27%
In 2016
41%

MATH
In 2001
55%
In 2016
40%
Demographic Changes
2001 through 2016

Ball-Chatham District 5

All Illinois

Enrollment in Grades 3-8

Bloomington District 87

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Champaign District 4

READING

- In 2001: 27%
- In 2016: 52%
- In 2016: 41/43%

MATH

- In 2001: 23%
- In 2016: 48%
- In 2016: 41%

Danville District 118

READING

- In 2001: 27%
- In 2016: 40%

MATH

- In 2001: 27%
- In 2016: 41%
Demographic Changes 2001 through 2016

Champaign 4

All Illinois

Danville District 118

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Decatur District 61

READING

In 2001

27% Chicago 299

39% Decatur 61

27% Chicago 299

41% Decatur 61

In 2016

MATH

In 2001

23% Chicago 299

34% Decatur 61

21% Chicago 299

41% Decatur 61

In 2016

Dunlap District 323

READING

In 2001

27% Chicago 299

74% Dunlap 323

23% Chicago 299

73% Dunlap 323

In 2016

MATH

In 2001

41% Chicago 299

82% Dunlap 323

41% Chicago 299

77% Dunlap 323

In 2016
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Galesburg District 205

READING

MATH

Jacksonville District 117

READING

MATH
Demographic Changes
2001 through 2016

Galesburg District 205

All Illinois

Enrollment in Grades 3-8

Jacksonville District 117

All Illinois

Districtwide Enrollment

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8
Scoring At/Above Statewide Medians in LUDA Districts

Kankakee District 111

READING

In 2001
26/27%
Kankakee 111

In 2016
41%
Kankakee 111

MATH

In 2001
23%
Kankakee 111

In 2016
41%
Kankakee 111

Mattoon District 2

READING

In 2001
27%
Mattoon 2

In 2016
41%
Mattoon 2

MATH

In 2001
23%
Mattoon 2

In 2016
41/42%
Mattoon 2
Demographic Changes
2001 through 2016

Kankakee District 111

Enrollment in Grades 3-8

Mattoon District 2

Enrollment in Grades 3-8

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

McLean County District 5

READING

In 2001
27%

In 2016
41%

In 2016
56%

MATH

In 2001
23%

In 2016
41%

In 2016
58%

Moline-Coal Valley District 40

READING

In 2001
27%

In 2016
36%

In 2016
41%

MATH

In 2001
23%

In 2016
37%

In 2016
41%
Demographic Changes
2001 through 2016
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Peoria District 150

- **READING**
 - In 2001: 27% (Peoria), 37% (National Median)
 - In 2016: 25% (Peoria), 41% (National Median)

- **MATH**
 - In 2001: 23% (Peoria), 37% (National Median)
 - In 2016: 25% (Peoria), 41% (National Median)

Quincy District 172

- **READING**
 - In 2001: 27% (Quincy), 53% (National Median)
 - In 2016: 41% (Quincy), 45% (National Median)

- **MATH**
 - In 2001: 23% (Quincy), 59% (National Median)
 - In 2016: 41% (Quincy), 45% (National Median)
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Rock Island District 41

READING
In 2001
27% Chicago 299
43% Rock Island 41

In 2016
28% Rock Island 41
41% Chicago 299

MATH
In 2001
23% Chicago 299
41% Rock Island 41

In 2016
30% Rock Island 41
41% Chicago 299

Springfield District 186

READING
In 2001
27% Chicago 299
39% Springfield 186

In 2016
41% Springfield 186

MATH
In 2001
23% Chicago 299
39% Springfield 186

In 2016
36% Springfield 186
41% Chicago 299
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Urbana District 116

READING

In 2001
- 27%
- Chicago 299
- Urbana 116

In 2016
- 31%
- Chicago 299
- Urbana 116

MATH

In 2001
- 23%
- Chicago 299
- Urbana 116

In 2016
- 30%
- Chicago 299
- Urbana 116
Demographic Changes
2001 through 2016

Urbana District 116

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8
APPENDIX C
Relationships between Equalized Assessed Valuation, Instructional Spending and School Effectiveness

Chicago and Suburban Chicagoland vs. Southern Illinois

Equalized assessed valuation (EAV) is the measure used by the Illinois State Board of Education to represent taxable property values in local school districts. Per pupil spending for instruction includes expenditures that directly support instruction but excludes other costs of district operations.

While deep analysis of the relationship between school funding and school effectiveness is beyond the scope of this report, regional shifts in school effectiveness during the NCLB era correspond quite closely with regional shifts in local property values and per pupil spending for instruction.

The two pages that follow summarize shifts in school effectiveness, EAV and per pupil instructional spending in suburban Chicagoland, and compare them with similar shifts in southern Illinois.

- Trends in school effectiveness between 2001 and 2016:
 - On average, school effectiveness in Chicago and suburban Chicagoland increased by about 10 points across the entire low-income continuum.
 - On average, school effectiveness in southern Illinois rose modestly in wealthier and poorer districts but remained unchanged at most districts in the middle of the low-income continuum.

- Trends in per pupil EAV between 2001 and 2016:
 - Substantial dollar growth in both suburban Chicagoland and southern Illinois
 - The percent of parity between southern Illinois and suburban Chicagoland stayed roughly constant in most districts but rose from 41% to 67% in districts with high incidence of low-income enrollment.

- Trends in per pupil instructional spending between 2001 and 2016:
 - Substantial dollar growth in both suburban Chicagoland and southern Illinois
 - The percent of parity between southern Illinois and suburban Chicagoland districts:
 - Stayed constant in districts with low-incidence of low-income enrollments
 - Decreased in districts with mid-range and high incidence of low-income enrollment.
On Average, Chicago and Suburban Chicagoland Districts Had Big, Upward Shifts in School Effectiveness at All Points on the Low-income Continuum between 2001 and 2016

15-Year Shifts in Equalized Assessed Valuation (EAV) Per Pupil and Per Pupil Spending for Instruction in Suburban Chicagoland: 2001 to 2016

Districts with Low Incidence, Mid-Range and High Incidence of Low-Income Enrollment

Equalized Assessed Valuation Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$230,240</td>
<td>$169,520</td>
<td>$87,562</td>
</tr>
<tr>
<td>2016</td>
<td>$423,391</td>
<td>$266,850</td>
<td>$129,769</td>
</tr>
</tbody>
</table>

Instruction Spending Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$4,478</td>
<td>$4,036</td>
<td>$3,820</td>
</tr>
<tr>
<td>2016</td>
<td>$7,147</td>
<td>$7,500</td>
<td>$6,400</td>
</tr>
</tbody>
</table>
Between 2001 and 2016, School Effectiveness in Southern Illinois Rose in the Wealthiest and Poorest Districts but Stayed Constant in Most Districts in the Middle of the Low-Income Continuum

Percent of EAV Parity with Suburban Chicagoland Was Roughly Constant under NCLB; Percent of Instructional Spending Parity Declined under NCLB except in Wealthier Districts

Districts with Low Incidence, Mid-Range and High Incidence of Low-Income Enrollment

Equalized Assessed Valuation Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$63,995</td>
<td>$46,599</td>
<td>$40,750</td>
</tr>
<tr>
<td>2016</td>
<td>28%</td>
<td>27%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>$133,599</td>
<td>$81,788</td>
<td>$79,048</td>
</tr>
<tr>
<td>2016</td>
<td>32%</td>
<td>31%</td>
<td>61%</td>
</tr>
</tbody>
</table>

Instruction Spending Per Pupil

<table>
<thead>
<tr>
<th></th>
<th>Low Incidence</th>
<th>Middle Range</th>
<th>High Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$3,337</td>
<td>$3,666</td>
<td>$3,876</td>
</tr>
<tr>
<td>2016</td>
<td>75%</td>
<td>91%</td>
<td>101%</td>
</tr>
<tr>
<td></td>
<td>$5,296</td>
<td>$5,723</td>
<td>$5,640</td>
</tr>
<tr>
<td>2016</td>
<td>74%</td>
<td>76%</td>
<td>88%</td>
</tr>
</tbody>
</table>
The remaining pages of Appendix C summarize shifts in achievement and demographics in each of the 6 southern Illinois districts that are members of the Large Unit District Association.
Shifts in Achievement and Demographics in the 6 Member Districts of the Large Unit District Association in SOUTHERN ILLINOIS

SOUTHERN ILLINOIS (6)

- Alton 11
- Cahokia 187
- Collinsville 10
- East St. Louis 189
- Effingham 40
- Marion 2
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Alton District 11

READING
- In 2001: 27% in Alton 11, 39% in Chicago 299
- In 2016: 41%/42% in Alton 11, 41%/42% in Chicago 299

MATH
- In 2001: 23% in Alton 11, 37% in Chicago 299
- In 2016: 35% in Alton 11, 41% in Chicago 299

Cahokia District 187

READING
- In 2001: 23%/27% in Chicago 299, 11% in Cahokia 187
- In 2016: 11% in Cahokia 187, 41% in Chicago 299

MATH
- In 2001: 22%/23% in Chicago 299, 15% in Cahokia 187
- In 2016: 41% in Chicago 299, 41% in Cahokia 187
Demographic Changes 2001 through 2016

Alton District 11

All Illinois

Enrollment in Grades 3-8

Cahokia District 187

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Collinsville District 10

READING

In 2001

27%
Chicago 299

50%
Collinsville 10

In 2016

37%
Collinsville 10

41%
Chicago 299

MATH

In 2001

23%
Chicago 299

50%
Collinsville 10

In 2016

41%
Collinsville 10

43%
Chicago 299

East St. Louis District 189

READING

In 2001

24/27%
Chicago 299

East St. Louis 189

In 2016

13%
East St. Louis 189

41%
Chicago 299

MATH

In 2001

21/23%
Chicago 299

East St. Louis 189

In 2016

11%
East St. Louis 189

41%
Chicago 299
Demographic Changes
2001 through 2016

Collinsville District 10

Enrollment in Grades 3-8

East St. Louis District 189

Enrollment in Grades 3-8

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Effingham District 40

READING
- In 2001: 27% (Effingham 40)
- In 2016: 41% (Effingham 40)

MATH
- In 2001: 58% (Effingham 40)
- In 2016: 54% (Effingham 40)

Marion District 2

READING
- In 2001: 27% (Marion 2)
- In 2016: 41% (Marion 2)

MATH
- In 2001: 55% (Marion 2)
- In 2016: 49% (Marion 2)
Demographic Changes
2001 through 2016

Effingham District 40

Enrollment in Grades 3-8

Marion District 2

Enrollment in Grades 3-8

All Illinois

Enrollment in Grades 3-8

% Low Income
% White
% Asian
% Multiracial
% Hispanic
% Black
% Native American
% Multiracial

Center for Urban Education Leadership, University of Illinois at Chicago
APPENDIX D

On Average, Chicago and Suburban Chicagoland Districts Had Big, Upward Shifts in School Effectiveness at All Points on the Low-income Continuum between 2001 and 2016

15-Year Shifts in Equalized Assessed Valuation (EAV) Per Pupil and Per Pupil Spending for Instruction in Suburban Chicagoland: 2001 to 2016

Districts with Low Incidence, Mid-Range and High Incidence of Low-Income Enrollment

<table>
<thead>
<tr>
<th>Equalized Assessed Valuation Per Pupil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Incidence</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>$230,240</td>
</tr>
<tr>
<td>2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction Spending Per Pupil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Incidence</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>$4,478</td>
</tr>
<tr>
<td>2016</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The remaining pages of Appendix D summarize shifts in achievement and demographics in Chicago and the 22 suburban Chicagoland districts that are members of the Large Unit District Association. Suburban Chicagoland includes districts in DuPage, Kane, Lake, McHenry, suburban Cook and Will counties.
Shifts in Achievement and Demographics in the 23 Member Districts of the Large Unit District Association in Suburban Chicagoland

- Aurora East 131
- Aurora West 129
- Barrington 220
- Batavia 101
- Central 301 (Burlington)
- Chicago 299
- Crete-Monee 201U
- CUSD 200 (Wheaton)
- CUSD 300 (Algonquin)
- Elmhurst 205
- Geneva 304
- Huntley 158
- Indian Prairie 204 (Aurora)
- Kaneland 302 (Maple Park)
- Lake Zurich 95
- Naperville 203
- Plainfield 202
- Round Lake 116
- St. Charles 303
- U-46 (Elgin)
- Valley View 365U (Romeoville)
- Waukegan 60
- Woodstock 200
Upstate/Downstate

Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Aurora East District 131

READING

In 2001

27.29%

In 2016

41%

MATH

In 2001

23%

In 2016

41%

Aurora West District 129

READING

In 2001

27%

In 2016

40/41%

MATH

In 2001

46%

In 2016

39%
Demographic Changes
2001 through 2016

Aurora East 131

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8

Aurora West 129

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8

Center for Urban Education Leadership, University of Illinois at Chicago
Page 110
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Barrington District 220

READING
- In 2001: 76%
- In 2016: 76%

MATH
- In 2001: 78%
- In 2016: 76%

Batavia District 101

READING
- In 2001: 71%
- In 2016: 62%

MATH
- In 2001: 74%
- In 2016: 70%
Upstate/Downstate

Demographic Changes 2001 through 2016

Barrington District 220

Enrollment in Grades 3-8

Batavia District 101

Enrollment in Grades 3-8

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8
Scoring At/Above Statewide Medians in LUDA Districts

Central District 301 (Burlington)

READING
- In 2001: 27%
- In 2016: 41%

MATH
- In 2001: 65%
- In 2016: 70%

City of Chicago District 299

READING
- In 2001: 27%
- In 2016: 41%

MATH
- In 2001: 23%
- In 2016: 41%
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Crete-Monee District 201U

READING
In 2001
27% Chicago 299
42% Crete Monee 201U

In 2016
41% Chicago 299
49% Crete Monee 201U

MATH
In 2001
23% Chicago 299
43% Crete Monee 201U

In 2016
39/41% Chicago 299

CUSD 200 (Wheaton)

READING
In 2001
27% Chicago 299

In 2016
41% Chicago 299
77% Wheaton CUSD 200

MATH
In 2001
23% Chicago 299
77% Wheaton CUSD 200

In 2016
68% Wheaton CUSD 200

Demographic Changes
2001 through 2016

Crete-Monee 201U

Enrollment in Grades 3-8

CUSD 200 Wheaton

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

CUSD 300 (Algonquin)

READING

- In 2001: 52%
- In 2016: 48%

MATH

- In 2001: 54%
- In 2016: 54%

Elmhurst District 205

READING

- In 2001: 73%
- In 2016: 70%

MATH

- In 2001: 77%
- In 2016: 73%
Demographic Changes 2001 through 2016

CUSD 300

All Illinois

Elmhurst District 205

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Geneva District 304

READING
- In 2001: 27%
- In 2016: 41%

MATH
- In 2001: 72%
- In 2016: 71%

Huntley District 158

READING
- In 2001: 61%
- In 2016: 71%

MATH
- In 2001: 64%
- In 2016: 68%
Demographic Changes 2001 through 2016

Geneva District 304

Enrollment in Grades 3-8

All Illinois

Enrollment in Grades 3-8

Huntley District 158

Enrollment in Grades 3-8

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8
Scoring At/Above Statewide Medians in LUDA Districts

Indian Prairie District 204 (Aurora)

READING
- In 2001: 76%
- In 2016: 71%

MATH
- In 2001: 77%
- In 2016: 77%

Kaneland District 302 (Maple Park)

READING
- In 2001: 68%
- In 2016: 58%

MATH
- In 2001: 70%
- In 2016: 65%
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Lake Zurich District 95

READING
- In 2001: 27%
- In 2016: 41%

MATH
- In 2001: 23%
- In 2016: 41%

Naperville District 203

READING
- In 2001: 27%
- In 2016: 41%

MATH
- In 2001: 23%
- In 2016: 41%

Center for Urban Education Leadership, University of Illinois at Chicago
Demographic Changes
2001 through 2016

Lake Zurich 95

All Illinois

Enrollment in Grades 3-8

Naperville District 203

All Illinois

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8
Scoring At/Above Statewide Medians in LUDA Districts

Plainfield District 202

READING

In 2001 55%
In 2016 60%

MATH

In 2001 56%
In 2016 62%

Round Lake District 116

READING

In 2001 39%
In 2016 41%

MATH

In 2001 35%
In 2016 41%
Shifts in Percent of Students in Grades 3-8
Scoring At/Above Statewide Medians in LUDA Districts

St. Charles District 303

READING
- **In 2001**: 27%
- **In 2016**: 41%

MATH
- **In 2001**: 72%
- **In 2016**: 68%

U-46 (Elgin)

READING
- **In 2001**: 27%
- **In 2016**: 41%

MATH
- **In 2001**: 45%
- **In 2016**: 48%
Demographic Changes
2001 through 2016

St. Charles District 303

All Illinois

District U-46

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8
Shifts in Percent of Students in Grades 3-8 Scoring At/Above Statewide Medians in LUDA Districts

Valley View District 365U (Romeoville)

READING
- In 2001: 27%
- In 2016: 41%

MATH
- In 2001: 23%
- In 2016: 41%

Waukegan District 60

READING
- In 2001: 27/28%
- In 2016: 41%

MATH
- In 2001: 23/33%
- In 2016: 41%
Shifts in Percent of Students in Grades 3-8
Scoring At/Above Statewide Medians in LUDA Districts

Woodstock District 200

READING

In 2001
27%
Woodstock 200

In 2016
41%
45%
Woodstock 200

MATH

In 2001
23%
57%
Woodstock 200

In 2016
41%
44%
Woodstock 200
Demographic Changes
2001 through 2016

Woodstock District 200

All Illinois

Enrollment in Grades 3-8

Enrollment in Grades 3-8
About the Authors

Paul Zavitkovsky is a former elementary and middle school teacher and principal. He is a former member of the Illinois Education Research Council Advisory Board and is currently a member of the Illinois State Board of Education’s Assessment Review Committee and the Illinois P-20 Council’s Data, Assessment and Accountability Committee. His work as a leadership coach and assessment specialist at the Urban Education Leadership Program of the University of Illinois-Chicago is supported by a continuing grant from the W. Clement and Jessie V. Stone Foundation.

Steven Tozer, Ph.D. is a Professor of Education and Director of the Center for Urban Education Leadership at the University of Illinois at Chicago. Professor Tozer is founding director of UIC’s Urban Education Leadership Program and Co-Chair of the Illinois School Leader Advisory Council (ISLAC). He is the co-author of Schools and Society (2012), now in its 7th edition, and the Handbook of Research in the Social Foundations of Education (2010).